Green Education - Why We Miss Innovations


Personal Note From Patrick, The Editor

Hi Reader, last week I posted about an essential step to make your lab greener: Quantification.

I thought this post might be of interest to you - also because I share some of my experience in the comments.

And while we often overlook the benefits of apparently trivial actions like quantification, the same can be said about innovations.

A good example is trypsin alternatives — let me explain the issue:


Today's Lesson: Trypsin Alternatives

How enzymes can be made more sustainable.


Number Of The Day

According to several sources such as Market Research Intellect or Valuates Reports, the animal-free trypsin market is valued at $80–150 million in 2024. That’s quite a sum and potentially bigger than numbers on traditional animal-based trypsin. With an annual growth rate of 5–8.5%, this topic is becoming increasingly relevant. What’s driving this growth, and will it actually benefit the environment? Let’s take a closer look.

80 Million


Exploring Trypsin Alternatives

We all await more green innovations. However, they’re sometimes already available.


We just have not heard about them... But why?

Two reasons:

  1. Poor visibility – Not every sustainable product is sufficiently advertised.
  2. Hidden benefits – Sometimes the advantage is there, but not obvious at first glance.

Trypsin alternatives might suffer from both but while we can do little about A), let's find out how to understand and overcome B).

Why, How, and When Trypsin?

Trypsin is best known in cell culture for detaching adherent cells.
But it’s also used to digest proteins and peptides for MS analysis, or in recombinant insulin manufacturing to convert proinsulin into active insulin.

Since cell detachment is critical in processes like vaccine production — and due to its role in insulin manufacturing, we see robust demand from the growing pharmaceutical industry.

However, behind the scenes, it comes with a few concerns:

  • It's traditionally extracted from the pancreas of pigs or cows, requiring their slaughter.
  • Quality can vary since it comes from living animals.
  • It carries risks of contamination (viruses, prions), which is especially critical in stem cell or pharmaceutical applications.

In short: effective, yes — but it comes with ethical and scientific challenges.

The Innovation

Recombinant trypsin, produced without animals using engineered microbes, could be the solution.


Most commonly, these alternatives are made by fermentation in Pichia pastoris (a type of yeast) grown in bioreactors or from bacteria such as E.coli. Trypsin is then isolated, purified, and stabilized.

For example, TrypLE™ functions just like trypsin. However, it is stable at room temperature (up to 24 months), gentler, and doesn’t require inhibitors for inactivation (dilution suffices).

Other alternatives, like r-Ac-trypsin (acetylated recombinant trypsin), are optimized for proteomics: they offer higher activity, more stability, and are less prone to autolysis.

The Sustainability Angle

These products offer several clear advantages:

  • No animal use → relies on microbes instead of slaughtered animals
  • No contamination risk → fewer failed batches and less repetition
  • More consistent activity and less autolysis → better reproducibility
  • Room-temperature stability → reduces energy demand for cooling
  • Inactivation by dilution → no need for added inhibitors

All of this points to less waste and potentially fewer resources used downstream.

The Sustainability Challenge

However, let's not jump to conclusions. A few sustainability considerations remain:

  • Recombinant production also consumes energy and chemicals — fermenters, purification steps, sterilization. It’s not footprint-free.
  • Animal-based trypsin often comes from meat industry by-products. Using it doesn’t necessarily increase animal harm.
  • Its production sites may be centralized (e.g., in the US), leading to longer transportation routes and associated emissions.

Applying The Knowledge

So, is recombinant trypsin truly more sustainable?

We don't know — because there are no LCAs (life cycle assessments) or carbon footprint analyses available.

But there may be sustainability advantages beyond the environmental:

  • Scientifically more sustainable: better reproducibility, less contamination, and less auto-degradation
  • Operationally more sustainable: easier to store and use, saving time and energy

For non-critical tasks like routine cell detachment, switching should be low risk.

For more sensitive processes, switching might require validation, but could improve efficiency or standardization in digestion workflows – aligning better with GMP standards.

Key Takeaway: We need to investigate sustainability claims — not all are accurate but sometimes, the real benefits are hiding where marketers don’t even look.

Upcoming Lesson:

Carbon Footprint of Imprecise Science


How We Feel Today


References

Manira, M. et al., Comparison of the effects between animal-derived trypsin and recombinant trypsin on human skin cells proliferation, gene and protein expression. Cell and Tissue Banking, 2014, 15(1), 41–49. doi:10.1007/s10561-013-9368-y

Wu, F. et al., Recombinant acetylated trypsin demonstrates superior stability and higher activity than commercial products in quantitative proteomics studies. Rapid Communications in Mass Spectrometry, 2016. doi:10.1002/rcm.7535

Karbalaei, M. et al., Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins. Journal of Cellular Physiology, 2020. doi:10.1002/jcp.29583

Li, C. et al., Development of an effective method for purifying trypsin using a recombinant inhibitor. Protein Expression and Purification, 2025, 225, 106597. doi:10.1016/j.pep.2024.106597


If you have a wish or a question, feel free to reply to this Email.

Otherwise, wish you a beautiful week!
See you again on the 24th : )

Find the previous lesson click - here -


Edited by Patrick Penndorf
Connection@ReAdvance.com
Lutherstraße 159, 07743, Jena, Thuringia, Germany
Data Protection & Impressum

If you think we do a bad job: Unsubscribe

ReAdvance

Here to share how we can make labs greener - based on my personal experience and those from labs all around the world

Read more from ReAdvance

Personal Note From Patrick, The Editor Hi Reader, preparation or action? Obviously, one cannot succeed without the other. But talking about preparation is often underappreciated because most people want action as fast as possible. Yet this impatience can lead them to achieve less in the end: Today's Lesson: How To Prepare For Change What we can do to pave the way for sustainability Number Of The Day Sometimes we have to be patient. Waiting for the right moment is hard, but often worth it....

Personal Note From Patrick, The Editor Hi Reader, have you ever changed a running system? It’s not a good idea. I've never done it in research, but I’ve unfortunately done it outside of it. However, changing the system at the right time is one of the best ideas - and this subtle difference is important. Let’s find out how to drive change safely and why it’s more a question of tactics than science: Today's Lesson: How To Drive Change Safely Tactics and insights on how to make processes greener...

Personal Note From Patrick, The Editor Hi Reader, what temperature are your freezers set to? Most often, there is concern about setting freezers to -70°C. One argument is power outages - however, this only gives you 2–4 hours until a -80°C freezer reaches -70°C. The other major concern is sample degradation... Let’s discover what the literature says: Today's Lesson: Is Storage at -70°C Safe? Reviewing the literature on low temperature storage Number Of The Day If you set your freezer from -80...