1. Baoutina, A., et al., 2019. Storage stability of solutions of DNA standards. Analytical Chemistry, 91(19), pp.12268–12274. doi:10.1021/acs.analchem.9b02334.
2. Zhao, Y., et al., 2017. Effects of preanalytical frozen storage time and temperature on screening coagulation tests and factors VIII and IX activity. Scientific Reports, 7(1), 12179. doi:10.1038/s41598-017-11777-x.
3. Podivinsky, E., et al., 2009. Effect of storage regime on the stability of DNA used as a calibration standard for real-time polymerase chain reaction. Analytical Biochemistry, 394(1), pp.132–134. doi:10.1016/j.ab.2009.06.024.
4. Ivanova, N.V., et al., 2013. Protocols for dry DNA storage and shipment at room temperature. Molecular Ecology Resources, 13(5), pp.890–898. doi:10.1111/1755-0998.12134.
5. Röder, B., et al., 2010. Impact of long-term storage on stability of standard DNA for nucleic acid-based methods. Journal of Clinical Microbiology, 48, pp.426–432. doi:10.1128/JCM.01230-10.
6. Bulla, A., et al., 2016. Blood DNA yield but not integrity or methylation is impacted after long-term storage. Biopreservation and Biobanking, 14(1), pp.29–38. doi:10.1089/bio.2015.0045.
7. White, M.P.J., et al., 2024. Integrity of RNA in long-term-stored cervical liquid-based cytology samples: implications for biomarker research. BioTechniques, 76(6), pp.245–253. doi:10.2144/btn-2023-0112.
8. Jones, K.L., et al., 2007. Long-term storage of DNA-free RNA for use in vaccine studies. BioTechniques, 43(5), pp.675–681. doi:10.2144/000112593.
9. Molnar, A., et al., 2021. Lyophilization and homogenization of biological samples improves reproducibility and reduces standard deviation in molecular biology techniques. Amino Acids, 53(6), pp.917–928. doi:10.1007/s00726-021-02994-w.
10. Riesgo, A., et al., 2012. Optimization of preservation and storage time of sponge tissues to obtain quality mRNA for next-generation sequencing. Molecular Ecology Resources, 12(2), pp.312–322. doi:10.1111/j.1755-0998.2011.03097.x.
11. Woodhams, B., et al., 2001. Stability of coagulation proteins in frozen plasma. Blood Coagulation & Fibrinolysis, 12(4), pp.229–236. doi:10.1097/00001721-200106000-00002.
12. Kitchen, S., et al., 2021. International Council for Standardization in Haematology (ICSH) recommendations for processing of blood samples for coagulation testing. International Journal of Laboratory Hematology, 43(6), pp.1272–1283. doi:10.1111/ijlh.13702.
13. Woodrum, D., et al., 1996. Stability of free prostate-specific antigen in serum samples under a variety of sample collection and sample storage conditions. Urology, 48(6 Suppl), pp.33–39. doi:10.1016/S0090-4295(96)00607-3.
14. Beekhof, P.K., et al., 2012. Long term stability of paraoxonase-1 and high-density lipoprotein in human serum. Lipids in Health and Disease, 11, p.53. doi:10.1186/1476-511X-11-53.
15. Panisello Yagüe, D., et al., 2021. Survival of Staphylococcus aureus on sampling swabs stored at different temperatures. Journal of Applied Microbiology, 131(3), pp.1030–1038. doi:10.1111/jam.15023.
16. Landor, L.A.I., et al., 2024. DNA, RNA, and prokaryote community sample stability at different ultra-low temperature storage conditions. Environmental Sustainability, 7, pp.77–83. doi:10.1007/s42398-023-00297-2.
17. Espinel-Ingroff, A., et al., 2004. Long-term preservation of fungal isolates in commercially prepared cryogenic microbank vials. Journal of Clinical Microbiology, 42(3), pp.1257–1259. doi:10.1128/JCM.42.3.1257-1259.2004.
18. Bhattacharya, S., et al., 2024. Reduce energy consumption in your laboratory – switch ultra-low temperature freezers from –80 °C to –70 °C: a pilot study on short term storage of plasma samples for coagulation testing. Scandinavian Journal of Clinical and Laboratory Investigation, 84(6), pp.421–424. doi:10.1080/00365513.2024.2394981.
19. Tang, R., et al., 2022. Quality control of DNA extracted from all-cell pellets after cryopreservation for more than 10 years. Biopreservation and Biobanking, 20(3), pp.211–216. doi:10.1089/bio.2021.0052.
20. Yuwono, N.L., et al., 2022. Circulating cell-free DNA undergoes significant decline in yield after prolonged storage time in both plasma and purified form. Clinical Chemistry and Laboratory Medicine, 60(8), pp.1287–1298. doi:10.1515/cclm-2021-1152.
21. Wang, Z., et al., 2024. Assessing the impact of long-term storage on the quality and integrity of biological specimens in a reproductive biobank. Bioengineering & Translational Medicine, 9(6), e10692. doi:10.1002/btm2.10692.
22. Stephenson, N.L., et al., 2020. Quality assessment of RNA in long-term storage: The All Our Families biorepository. PLoS One, 15(12), e0242404. doi:10.1371/journal.pone.0242404.
23. Hubel, A., et al., 2014. Storage of human biospecimens: selection of the optimal storage temperature. Biopreservation and Biobanking, 12(3), pp.165–175. doi:10.1089/bio.2013.0084.
24. Doster, W., et al., 1989. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature, 337, pp.754–756. doi:10.1038/337754a0.
25. Leonard, S., et al., 1993. Biological stability of mRNA isolated from human postmortem brain collections. Biological Psychiatry, 33(6), pp.456–466. doi:10.1016/0006-3223(93)90174-C.
26. Shabihkhani, M., et al., 2014. The procurement, storage, and quality assurance of frozen blood and tissue biospecimens in pathology, biorepository, and biobank settings. Clinical Biochemistry, 47(4–5), pp.258–266. doi:10.1016/j.clinbiochem.2014.01.002.
27. Kypraiou, C., et al., 2025. Evolution and evaluation of ultra-low temperature freezers: A comprehensive literature review. Foods, 14(13), 2298. doi:10.3390/foods14132298.
28. Muller, R., et al., 2016. Preservation of biospecimens at ambient temperature: Special focus on nucleic acids and opportunities for the biobanking community. Biopreservation and Biobanking, 14(2), pp.89–98.
29. Narvaez Villarrubia, C.W., et al., 2022. Long-term stabilization of DNA at room temperature using a one-step microwave assisted process. Emergent Materials, 5(2), pp.307–314. doi:10.1007/s42247-021-00208-3.
30. Lou, J.J., et al., 2014. A review of room temperature storage of biospecimen tissue and nucleic acids for anatomic pathology laboratories and biorepositories. Clinical Biochemistry, 47(4–5), pp.267–273. doi:10.1016/j.clinbiochem.2013.12.011.